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Abstract. It is a common assumption that time reversal invariance or some other anti-
unitary symmetry for a classically chaotic system implies GOE-type spectral fluctuations for
the corresponding quantum system. Based on previous work on structural invariance, we show
that a time-reversal invariant system for certain point symmetries displays the GUE statistics
typical of systems with broken time-reversal symmetry; specifically a billiard having only three-
fold symmetry shows this unexpected behaviour.

A long-standing question concerns the connection between spectral statistics of quantum
systems in the semiclassical limit on the one hand and the nature of their classical dynamics
on the other. A large body of numerical evidence [1–4] has shown so far that classically
chaotic systems with no further symmetries have spectra which are well described by
Random Matrix Theory. This means that the spectral statistics are those of the corresponding
random matrix ensembles. As is well known [5], there are three classical ensembles,
depending on the behaviour of the system under time reversal. If the system is time-
reversal invariant (TRI), the ensemble is one of real symmetric matrices known as the
Gaussian orthogonal ensemble (GOE), whereas if it is not, the ensemble is one involving
hermitean matrices known as the Gaussian unitary ensemble (GUE). The third ensemble
(GSE) involves particles with spin and will not concern us in what follows. Further,
numerical evidence has shown that the different invariant subspaces of a Hamiltonian with
a symmetry (continuous or discrete) display the statistics individually and the corresponding
results are statistically independent of one another.

Analytic discussions of such behaviour were first given, based on periodic orbit theory
[6], and more recently [7, 8], based on the concepts of structural invariance and unitary
representations of canonical transformations [9, 10].

Based on the second of these methods we came upon a particularity that contradicts
the commonly accepted belief that systems with time-reversal invariance or some other
anti-unitary symmetry [11] and a point symmetry have a spectrum with GOE statistics in
each invariant subspace with respect to the point symmetry. The theory developed in [7, 8]
will be applied to this situation and we shall find that, whenever the time-reversal operation
and operations of the point group do not commute, the common assumption is wrong for
non-self-conjugate invariant subspaces of the point group.

In [7, 8] the concept of a structural invariance groupH is introduced as the group
of canonical transformations that leaves all non-chaotic features of a canonical mapC

invariant; this implies the invariance of such things as invariant tori and discrete symmetries
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among others. We shall be particularly interested in the latter, and shall therefore consider
a completely chaotic (K-) system that displays time-reversal invariance and some point
symmetry. IfG is the group of all bijective canonical transformations on the compact phase
space we consider, thenH is the subgroup ofG × G that conserves these two symmetries
and acts onC as:

(S, S ′) : C → SCS ′. (1)

where S and S ′ ∈ G such that(S, S ′) ∈ H. In the absence of any further constraint
H = G × G. i.e. S and S ′ are arbitrary. The groupH then generates fromC a family
6 of canonical transformations. Using the representation theory of classical canonical
transformations in quantum mechanics [10, 11]G is represented byU(n) wheren is the
number of cells of sizehd in our compact phase space of dimension 2d. We shall use a
suffix Q for the quantum counterparts of the classical quantities defined. The family6 is
represented by a family6Q = U(n) which is uniquely endowed with a measure, namely
the Haar measure. Thus the quantum counterpart of6 has the pleasant property of forming
an ensemble (for which we know that special and trivial elements such as e.g. unity are of
measure zero). This ensemble is known as the CUE, which is the circular ensemble with
the same local fluctuation properties as the GUE [12].

In general, the groupHQ has to be represented by a subgroup ofU(n)× U(n), which
will induce a unique measure on6Q. For the specific case we are interested in,H is
restricted both by time-reversal invariance and by some point symmetry.

The first implies the restrictionS ′ = T S−1T , where T is the time-reversal
transformation. (This transformation is not canonical, but for any canonical transformation
R, T RT is also canonical). The second impliesPS = SP andPS ′ = S ′P for all elements
P of the point groupP. In the first case, the unitary representation yields Dyson’s measure
for the COE (the circular ensemble with local statistics equivalent to those of the GOE [12]).
In the second case,HQ is the direct product ofU(nf ) × U(nf ) taken over all irreducible
representationsf of dimension|f |; nf is determined such that the dimension of the invariant
subspace transforming according tof is nf |f |. This product structure ofH leads to the
independence of spectra pertaining to different invariant subspaces with a CUE for each.

The important question is how these two elements may combine. The common
expectation is to find COE’s with Dyson measures for each invariant subspace. This is
certainly true if T PT = P for all P ∈ P. In the opposite case, however, things are
somewhat more complicated. In the quantum version, the action ofT on the invariant
subspaces ofP can be of two kinds: eitherT leaves them invariant or it permutes two
subspaces among each other; the latter will happen for invariant subspaces corresponding
to irreducible representations ofP that are not self-conjugate. If the point group has only
self-conjugate representations we are again reduced to the usual situation. We shall therefore
focus on groups that have at least one conjugate pair of representations. Without loss of
generality we can therefore limit our attention to a single conjugate pair of representations
f, f ∗. The quantum version of the structural invariance group for the invariant subspace
corresponding to this pair of representations is given byU(nf )× U(nf ∗) with the action

(5f +5f ∗)CQ→ U15fCQU
t
2 + U25f ∗CQU

t
1. (2)

Here5f ,5f ∗ are projectors onto the invariant subspaces corresponding to the irreducible
representationsf, f ∗ and U1, U2 are elements ofU(nf ),U(nf ∗) respectively. Note that
the transformations in the two unitary groups are independent and thus for one invariant
subspace we have a Haar measure ofU(nf ) leading to a CUE ensemble, that is, the ensemble
that describes the subspaces does not reflect the TRI property of the whole system, but
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rather its violation in each subspace separately. Here we should mention the well known
fact that such systems have a non-trivial degeneracy: since to every eigenvector of the
subspace transforming according tof there corresponds a time-reversed vector of the one
transforming according tof ∗ , and since the full system is invariant under time reversal, the
eigenvalues of subspaces 1 and 2 must be degenerate. This property, which must certainly
be true of the original system, is then easily seen to be conserved under the action given in
equation (2), and holds for the entire ensemble.

It should be carefully noted that up to now we have only discussed the derivation of
COE or CUE distribution for theeigenphasesof periodically driven time-dependent systems.
The generalization to bound systems is far from trivial and has been presented elsewhere
[7]. We can, however, summarise the results obtained in these papers as follows: it is found
that all properties that can be derived through such arguments as the above carry through for
the eigenvalues of time-independent bound systems. The only caveat concerns the fact that
the local eigenvalue density shows variations over large energy scales which are described
by the Weyl formula, whereas eigenphases are always uniformly distributed on the unit
circle. With this in mind, we can look for an example of the phenomenon described in the
last paragraph, namely the appearance of invariant subspaces with GUE behaviour in TRI
systems with appropriate discrete symmetry. The fact that such behaviour has never been
reported before in numerical work is easily understood if one notes that parity, which is the
discrete symmetry that appears most frequently, does indeed satisfyT PT = P . It therefore
cannot give rise to invariant subspaces with GUE statistics. Since we are not aware of any
other theoretical work making such a prediction, a numerical test is important.

Figure 1. Form of the billiard studied in the text. The corners of the equilateral triangle are
rounded by circle segments whose radii differ by a factor of two. A corresponding billiard with
a mirror symmetry was also studied, in which the rounding was obtained by a circle segment
corresponding to the larger radius.

To this end we consider the billiard shown in figure 1. It has three-fold symmetry, but
no mirror symmetry. This last is to ensure that the symmetry group does have a pair of
distinct but conjugate representations. In quantum mechanics, the problem separates into
three invariant subspaces according to the value of the angular momentum taken mod 3,
which is a good quantum number. Under complex conjugation, which corresponds toT ,
the subspaces corresponding tom = 1 andm = −1 mod 3 respectively are interchanged.
In figure 2(a) we show the nearest-neighbour spacing distribution for a set of∼ 800
eigenvalues of these subspaces (which were checked explicitly and found numerically to be



L578 Letter to the Editor

(a)

(b)

Figure 2. (a) The nearest-neighbour spacing distributionP(S) for the billiard shown in figure
1. The agreement with the GUE prediction (thick dotted line) is apparent. (b) The nearest-
neighbour spacing distributionP(S) for the mirror-symmetric billiard. This shows ordinary
GOE behaviour (thin dotted line). (c) The cumulative distribution

∫ S
0 P(S

′)dS′ is shown, both
for the billiard of figure 1 and for the mirror-symmetric billiard in order to show the short
distance eigenvalue repulsion in greater detail. In all cases, the thick dotted line represents
the GUE prediction, whereas the thin dots show the GOE prediction. The thick continuous line
shows the data for the billiard of figure 1 and the thin line those of the mirror-symmetric billiard.

degenerate within the numerical accuracy). Both are clearly compatible with the GUE and
strongly at variance with the GOE predictions. We also show in figure 2(c) the cumulative
distribution for small distances. There it is quite clear that the type of level repulsion is
indeed characteristic of the GUE for this billiard, just as we predict. In figure 3 we show
the13(L) statistic which measures the long-range behaviour of the two-point correlation
function of the spectrum. Again, agreement with the GUE prediction is good, at least
for low values ofL. A technical point: this particular billiard has a set of non-isolated
marginally stable orbits, which affect the large-L behaviour of13(L). A standard technique
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Figure 2. Continued.

Figure 3. The 13(L) statistic both for the billiard of figure 1 (thick continuous line) and
the mirror-symmetric billiard (thin continuous line). Again the dotted lines indicate the GUE
and GOE predictions respectively. The agreement at lowL is satisfactory, whereas at largeL
discrepancies occur due to non-universal features of the spectrum such as long-range rigidity and
non-isolated orbits. Nevertheless, it should be noted that the saturation value is approximately
twice as large for the mirror-symmetric billiard as for the non-mirror-symmetric one, in good
agreement with the difference expected between a GOE and a GUE.

(described in [13]) was used to eliminate this problem. Nevertheless, the agreement at large
L remains slightly problematic, but the effect is sufficiently large and the small distance
quadratic repulsion of the eigenvalues is seen with sufficient clarity to exclude the possibility
of describing the data by a GOE.

Finally let us consider what happens in the case where the billiard does indeed have a
mirror symmetry. In this case, all invariant subspaces ofP are left invariant byT , so they
are expected to show GOE statistics. As a check on the above, a mirror-symmetric form of
the billiard shown in figure 1 was also studied. There it was found that the doubly degenerate
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subspace was rather well-described by a GOE. This is shown in figures 2(b) and 2(c), as well
as in figure 3. As seen in those figures, both the short-range and the long-range behaviour
of this billiard are markedly different from those of its non-mirror-symmetric analogue.

To summarise, we have applied a recent argument for the connection between chaos
and spectral statistics based on the concept of structural invariance. We considered discrete
symmetries in this context and obtained the unexpected result that time-reversal invariant
systems may have invariant subspaces on which the spectrum has GUE fluctuations. This
only occurs if the subspace invariant with respect to the point group is not invariant under
time reversal. The prediction was confirmed numerically for a billiard with a threefold ro-
tational symmetry. Apart from the obvious intrinsic interest of this finding, this successful
prediction underscores the usefulness of the concept of structural invariance.
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